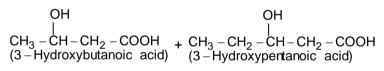
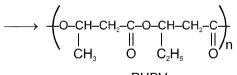
Points to remember in Polymers


Biodegradable Polymers :


A large number of polymers are quite resistant to the environmental degradation processes and are thus responsible for the accumulation of polymeric soild waste materials. These soild wastes cause acute environmental problems and remain undegraded for quite a long time. In view of the general awareness and concern for the problems created by the polymeric soild wastes, certain new biodegradable synthetic polymers have been designed and developed. These polymers contain functional groups similar to the functional groups present in biopolymers.

Aliphatic polyesters are one of the important classes of biodegradable poylmers. Some examples are given below :

(a) Poly β -hydroxybutyrate – co– β -hydroxy valerate (PHBV) :

It is obtained by the copolymerisation of 3-hydroxybutanoic acid and 3-hydroxypentanoic acid.

PHBV

PHBV is used in speciality packaging, orthopaedic devices and in controlled release of drugs. PHBV undergoes bacterial degradation in the environment.

(b) Nylon–2–nylon–6 :

It is an alternating polyamide copolymer of glycine (H_2N-CH_2-COOH) and amino caproic acid

 $(H_2N(CH_2)_5COOH)$ and it is also biodegradable polymer.

 $nH_2N-CH_2-COOH + nH_2N-(CH_2)_5-COOH \longrightarrow - \left[NH-CH_2-CO-NH-(CH_2)_5-CO \right]_n$

Some common addition polymers/chain growth polymer							
S. No.	Name(s)	Formula	Monomer	Uses			
1.	Polyethylene (low density (LDPE))	-(CH ₂ -CH ₂) _n -	CH ₂ =CH ₂ (ethylene)	Film wrap, Plastic Bags			
2.	Polyethylene (high density (HDPE))	-(CH ₂ -CH ₂) _n -	CH ₂ =CH ₂ (ethylene)	Electrical insulation bottles, toys			
3.	Polypropylene (PP) different grades	Сн ₃ -{сн-сн ₂ -]	CH ₂ =CHCH ₃ (propylene)	Manufacture of ropes, toys, pipes, fibres etc.			
4.	Poly vinyl chloride (PVC)	Сі -{сн-сн ₂ }-	CH ₂ =CHCI (vinyl chloride)	Manufacture of rain coats, hand bags, vinyl flooring, water Pipes etc.			
5.	Poly vinylidene chloride (Saran A)	E C C C C C C C C C C C C C	CH ₂ =CCl ₂ (vinylidene chloride)	Seat covers, films & fibers			
6.	Polystyrene (Styron)		CH₂=CHC ₆ H₅ (styrene)	As insulator, wrapping material, manufactures of toys, radio and Television cabinets			
7.	Polyacrylonitrile (PAN, Orlon, Acrilan)	CN L CH-CH ₂ -	CH ₂ =CHCN (acrylonitrile)	Rugs, Blankets clothing			
8.	Polytetrafluoroethylene (PTFE, Teflon)	-(CF ₂ -CF ₂) _n -	CF ₂ =CF ₂ (tetrafluoroethylene)	Non-stick surfaces electrical insulation			
9.	Poly methyl methacrylate (PMMA, Lucite, Plexiglas, perspex)	$-[CH_2C(CH_3)CO_2CH_3]_n-$	$CH_2=C(CH_3)CO_2CH_3$ (methylmethacrylate)	Lighting covers, signs skylights			
10.	Poly vinyl acetate (PVAc)	-(CH ₂ -CHOCOCH ₃) _n -	CH ₂ =CHOCOCH ₃ (vinyl acetate)	Latex paints, Adhesives			
11.	Natural Rubber	-[CH ₂ -CH=C(CH ₃)-CH ₂] _n - (cis)	CH ₂ =CH–C(CH ₃)=CH ₂ (isoprene)	Requires vulcanization for practical use			
12.	Neoprene	-[CH ₂ -CH=CCI-CH ₂] _n -	CH ₂ =CH-CCI=CH ₂ (chloroprene)	Synthetic rubber, oil resistant seal, gaskets, hoses & conveyor belts			
13.	SBR styrene butadiene rubber (Buna-S)	-[CH ₂ -CH-CH ₂ -CH=CH-CH ₂]- Ph	$H_2C=CHC_6H_5$ and $H_2C=CH-CH=CH_2$	Tyres, floortiles, foot wear & cable insulation			
14.	Nitrile Rubber (Buna-N)	-[CH ₂ -CH-CH ₂ -CH=CH-CH ₂]- I CN	$H_2C=CHCN$ and $H_2C=CH-CH=CH_2$	Making oil seals, tank lining and hoses			

Get More Learning Materials Here :

	Some condensation polymers/step growth polymers						
S.	Name(s)	Formula	Monomer	Uses			
1.	Polyester/Dacron/ Terylene/Mylar		HO ₂ C C ₆ H ₄ CO ₂ H (Terephthalic acid) HO–CH ₂ CH ₂ –OH Ethylene glycol	Fabric, Tyrecord			
2.	Glyptal or Alkyds resin		HO ₂ C–C ₆ H ₄ –CO ₂ H (Phthalic acid) HO–CH ₂ CH ₂ –OH	Paints and Lacquers			
3.	Polyamide (Nylon 6,6)	~[CO(CH ₂) ₄ CO–NH(CH ₂) ₆ NH] _n ~	$HO_2C-(CH_2)_4-CO_2H$ $H_2N-(CH_2)_6-NH_2$	Parachutes & Clothing			
4.	Nylon 6,10	O O II II - (C–(CH ₂) ₆)–C–NH–(CH ₂) ₆ –NH) _n	HOOC–(CH ₂) ₈ –COOH H ₂ N–(CH ₂) ₆ –NH ₂				
5.	Polyamide Nylon 6, Perlon-L	-[CO(CH ₂) ₅ NH] _n ~		Rope & Tyrecord			
6.	Bakelite	$(\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \right)_{n} \end{array} \right)$	PhOH + HCHO in (excess)	Electrical Switch, combs, Handle of Utensils, computer discs and Bowling Balls			
7.	Urea-formaldehyle resin	(-NH-CO-NH-CH ₂ -) _n	H ₂ N–CO–NH ₂ (Urea) HCHO (Formaldehyde)	Making unbreakable cups and laminated sheets.			
8.	Melamine formaldehyde resin		H ₂ N N NH ₂ N (melamine) NH ₂ (formaldehyde)	Unbreakabl e crockery			
9.	Polyamide Kevlar		Para HO ₂ C–C ₆ H ₄ –CO ₂ H	Туге			
10.	Polyamide Nomex		Meta HO ₂ C-C ₆ H ₄ -CO ₂ H Meta H ₂ N-C ₆ H ₄ -NH ₂				
11.	Polyurethane Spandex	$ \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$		Foams, Shoes, Automobile seats and components			
12.	Polycarbonate Lexan		$\begin{array}{l} (HO-C_{6}H_{4}-)_{2}C(CH_{3})_{2}\\ (Bisphenol A)\\ X_{2}C=O \ (X=OCH_{3} \ or \ CI) \end{array}$	Bike helmet, goggles, bullet proof glass			